Электронные компоненты для разработки и производства. Харьков, Украина. Контрольный источник напряжения на AD584 Микросхемы для источников опорного напряжения

Понадобился мне тут недорогой источник опорного напряжения. Полистав каталоги, я остановил свой выбор на микросхеме TL431 за 20 рублей. Сейчас расскажу, что это за букашка и как ее использовать.

TL431

TL431 - это так называемый программируемый стабилитрон . Применяется в качестве источника опорного напряжения и источника питания для малопотребляющих схем. Выпускается несколькими производителями и в разных корпусах, мне досталась от Texas Instruments в корпусе SOT23.

Технические характеристики:

Выходное напряжение от 2.5 до 36 В
- рабочий ток от 1 до 100 мА
- выходное сопротивление 0.2 Ом
- точность 0.5%, 1% и 2%

Имеет три вывода. Два как у стандартного стабилитрона - анод и катод. И вывод опорного напряжения, который подключается к катоду или средней точке делителя напряжения. На зарубежных схемах обозначается так:



Минимальная схема включения требует один резистор и позволяет получать опорное напряжение 2.5 В.


Резистор в этой схеме рассчитывается по следующей формуле:


где Ist - ток TL431, а Il - ток нагрузки. Входной ток опорного вывода не учитывается, так как он ~2 мкА.

В полной схеме включения к TL431 добавляются еще два резистора, но в этом случае можно получить произвольное выходное напряжение.



Номиналы резисторов делителя напряжения и выходное напряжение TL431 связаны следующим соотношением:


,где Uref = 2.5 В, Iref = 2 мкА. Это типовые значения и они имеют определенный разброс (смотрите даташит).

Если задаться значением одного из резисторов и выходным напряжением, то можно рассчитать значение второго резистора.


А зная выходное напряжение и входной ток, можно рассчитать номинал резистора R1:


,где Iin - входной ток схемы, который складывается из рабочего тока TL431, тока делителя напряжения и тока нагрузки.

Если TL431 используется для получения опорного напряжения, то резисторы R2 и R3 нужно брать с точностью 1% из ряда E96.

Расчет стабилизатора напряжения на TL431

Начальные данные

Входное напряжение Uin = 9 В
Требуемое выходное напряжение Uout = 5 В
Ток нагрузки Il = 10 мА

Данные из даташита:

Ist = 1..100 мА
Iref = 2 мкА
Uref = 2.495 В

Расчет

Задаемся значением резистора R2. Максимальное значение этого резистора ограничено током Iref = 2 мкА. Если брать номинал резистора R2 равным единицам/десяткам кОм, то это подойдет. Пусть R2 = 10 кОм.

Так как TL431 используется в качестве источника питания, высокая точность здесь не нужна и членом Iref*R2 можно пренебречь.


Округленное значение R3 будет равно 10 кОм.

Ток делителя напряжения равен Uout/(R1+R2) = 5/20000 = 250 мкА.

Ток TL431 может быть от 1 до 100 мА. Если взять ток Ist > 2 мА, то током делителя можно пренебречь.

Тогда входной ток будет равен Iin = Ist + Il = 2 + 10 = 12 мА.

А номинал R1 = (Uin - Uout)/Iin = (9 - 5)/0.012 = 333 Ом. Округляем до 300.

Мощнность, рассеиваемая на резисторе R1, равна (9 - 5)*0.012 = 0.05 Вт. На остальных резисторах она будет еще меньше.

R1 = 300 Ом
R2 = 10 кОм
R3 = 10 кОм

Примерно так, без учета нюансов.

Емкость нагрузки

Если будете использовать TL431 и повесите на выходе конденсатор, то микросхема может "загудеть". Вместо уменьшения выходного шума, на катоде появится периодический пилообразный сигнал в несколько милливольт.


Емкость нагрузки, при которой TL431 ведет себя стабильно, зависит от тока катода и выходного напряжения. Возможные значения емкости показаны на картинке из даташита. Стабильные области - это те, что за пределами графиков.

Микросхемы ИОН обеспечивают точное термокомпенсированное напряжение для использования во всевозможных приложениях - от аналого-цифровых преобразователей до медицинского оборудования

Источники опорного напряжения (ИОН) выпускаются как с фиксированными, так и с регулируемыми выходными напряжениями. Чтобы получить регулируемый выход, к выводу опорного напряжения подключают резистивный делитель. Эти ИОН бывают либо шунтового типа (двухвыводные), либо последовательного (трехвыводные). Обычно такие микросхемы выпускаются семействами, содержащими ряд точных выходных напряжений. В некоторых семействах может быть до десятка различных значений выходных напряжений от 0.500 В до 10.000 В с допусками от 0.05% до ±2%. Двумя из наиболее важных параметров ИОН являются начальная точность выходного напряжения и его температурный коэффициент.

Вот некоторые из характеристик, которыми должен обладать идеальный источник опорного напряжения:

  • Выходное напряжение, независящее от изменений температуры;
  • Выходное напряжение, независящее от тока нагрузки;
  • Выходное напряжение, независящее от времени;

Кроме того, идеальный ИОН должен иметь:

  • Высокую начальную точность;
  • Возможность как отдавать, так и принимать ток;
  • Низкий собственный ток потребления (или рассеваемая мощность);
  • Низкие шумы;
  • Приемлемую цену.

Однако эти идеальные характеристики недостижимы, поэтом разработчик должен учитывать следующее:

В двухвыводных опорных источниках обычно используются стабилитроны. Основным преимуществом стабилитронов является широкий диапазон напряжений от 2 В до 200 В. Кроме того, они имеют широкий диапазон допустимых мощностей - от нескольких милливатт до нескольких ватт. Недостатки стабилитронов заключаются в невысокой точности, не отвечающей требованиям прецизионных приложений. Кроме того, потребляемая стабилитронами мощность не позволяет использовать их в малопотребляющих приложениях. Еще одна проблема связана с относительно высоким выходным импедансом некоторых типов приборов.

Другой тип опорных источников, обычно используемый в трехвыводных микросхемах последовательного типа, основан на напряжении, определяемом шириной запрещенной зоны. Напряжение таких ИОН, называемых «бандгап» (от англ. bandgap) не зависит от температуры, поэтому они широко используются в интегральных схемах, и обычно имеют выходное напряжение порядка 1.25 В, что близко к теоретическому значению ширины запрещенной зоны кремния, равной 1.22 эВ при 0 K.

С точки зрения практического использования шунтовые ИОН похожи на стабилитроны, поскольку и тем и другим требуется внешний резистор, определяющий максимальный ток, который может быть отдан в нагрузку. Кроме того, внешний резистор задает минимальный ток смещения, необходимый для стабилизации напряжения. Остановить свой выбор на шунтовом ИОН вы можете в том случае, когда нагрузка почти постоянна, а колебания питающего напряжения минимальны.

Бандгапы не требуют никаких внешних компонентов, а их применение целесообразно там, где нагрузка нестабильна, а напряжение должно быть низким. Кроме того, по сравнению с шунтовыми приборами, огни более устойчивы к колебаниям напряжения питания.

Последовательные ИОН имеют ряд преимуществ перед шунтовыми. Шунтовым источникам нужен резистор, выбираемый в соответствии с требуемым максимальным током нагрузки. Этот ток шунтовой ИОН должен потреблять всегда, даже когда нагрузка далека от максимальной, что приводит к большому рассеиванию мощности и сокращению срока службы батареи. Последовательным ИОН токоограничительные резисторы не нужны, а диапазон их напряжений питания относительно велик и зависит от выходного напряжения.

Температурный дрейф является мерой зависимости выходного напряжения от изменения температуры и выражается в ppm/°C. Опорные источники на основе стабилитрона со скрытым переходом обычно имеют меньший температурный дрейф, чем приборы, в которых используется ширина запрещенной зоны.

Тепловой гистерезис выходного напряжения характеризует изменение выходного напряжения при опорной температуре, обычно равной 25 °C, обусловленное последовательными противоположными изменениями температуры от низкой к высокой и от высокой к низкой. Негативные последствия этого эффекта могут возникать из-за того, что его амплитуда прямо пропорциональна отклонениям температуры связанной системы. В некоторых системах этот параметр не воспроизводится от одного цикла изменения температуры к другому. Тепловой гистерезис зависит от схемы ИОН и от конструкции его корпуса. Гистерезис указывается в частях на миллион (ppm).

Начальная точность - важная характеристика для систем, в которых калибровка невозможна или неудобна. Подобная калибровка обычно выполняется для всей системы в целом. Начальная точность указывается для определенного входного напряжения и нулевого тока нагрузки (для последовательных ИОН) или для определенного тока смещения (для шунтовых ИОН).

Долговременный дрейф влияет на выходное напряжение, постепенно изменяя его с течением времени. Наиболее заметные изменения происходят в первые 200…500 часов работы ИОН. Этот параметр важен для особо ответственных и точных приложений или в тех случаях, когда периодическая калибровка невозможна. Данные о долговременной стабильности могут быть основаны на результатах наблюдения в течение 1000 часов при комнатной температуре. При необходимости поддержания высокой точности долговременный дрейф может требовать частой калибровки, и даже термотренировки схемы.

Рассеиваемая мощность зависит от напряжения и тока, необходимых для поддержания надлежащих рабочих характеристик.

Выходной шум обычно приводится в документации для двух частотных диапазонов: от 0.1 Гц до 10 Гц (пиковое значение) и от 10 Гц до 1 кГц (среднеквадратичное значение). Учет шума необходим в связи с тем, что он снижает динамический диапазон системы сбора данных. В системах выборки данных высокого разрешения шум опорного источника может быть единственной причиной «дрожания» младших разрядов результатов преобразования. В некоторых ИОН предусмотрена возможность снижения шума с помощью внешнего фильтрующего конденсатора, подключаемого к специальному выводу.

В предыдущей статье я рассказывал про , а в этой закладочке я расскажу об самом основном в схемах это опорное напряжении. Для чего нужны источники опорного напряжения, а для маломощных частей схемы, для питания их стабильным током, для примерного напряжения, от которого нужно отпираться или же с которым нужно сравниваться.

Самый простой вариант стабилизации на стабилитроне. Резистор R1 ограничивает ток. Условие (Uвх-Uвых)/Rs>Uвых/R2. Так же такой стабилизатор можно усилить с помощью транзистора.

ИОН(источник опорного напряжения) на стабилитроне прост, но для более высокой стабилизации, хорошо использовать регулируемый стабилитрон TL431. Которым кстати можно выставить практически любое напряжение на выходе ИОН от 2,5В до 37В. Главное, что бы входящее напряжение не превышало 40В, а рассеиваемая мощность не превышала 0,75Вт

Управление стабилитрона идет через управляющую ножку, на которой должно быть опорное равное 2,5В. Это опорное рассчитывается резисторами R2 и R3. На TL431 можно сделать так же стабилитрон на 2,5В, если подключить по схеме

Ток TL431 до 100мА, но его можно усилить с помощью транзистора, как на схеме

Интегральные прецизионные источники напряжения обеспечи­вают установленное выходное напряжение с погрешностью не более 0,1 мВ при высокой временной и температурной стабильности. Та­кие источники опорного напряжения (ИОН) необходимы для пре­цизионной измерительной аппаратуры, а также для аналого-цифро­вых и цифро-аналоговых преобразователей. Основные типы микро­схем источников опорного напряжения представлены в табл. 2.10.

Нестабильность эталонного напряжения, обусловленную воздей­ствием окружающей температуры, можно значительно уменьшить, используя термостатирование. Например, монолитная ИМС типа LM199 содержит схему терморегулирования, которая поддерживает температуру кристаллаLM199 постоянной с точностью ±2°С и обеспечивает ТКН< 1,0-10- 6 1/°С.

Другой принцип стабилизации, основанный на использований-генераторов стабильных токов, применяется при более низких вход­ных напряжениях. На основе этого принципа действия выпускается серия монолитных источников опорного напряжения AD580,AD581U,AD581I. Например ИМС типаAD581Uобеспечивает выходное на­пряжение 10 В с погрешностью ±5 мВ при температурном коэффи­циенте меньше 5-10~ 6 1/°С.

Таблица 2.8. Стабилизаторы напряжения с регулируемымвыходным напряжением

Тип прибора

U ВЫХ. НОМ , в

Тип корпуса

SFC2100}

ТО-66, DIPТО-5

м А79МС

SGI 17 }

- 1,2 - - 37

Продолжение табл. 2.8

Тип прибора

Uвых. ном, В

U вхmax ,

max , МА

Тип корпуса

Таблица 2.9. Стабилизаторы напряжения с двухполярным выходным напряжением

Тип прибора

U ВЫХ. НОМ, В

U вхmax

max, MA

Тип корпуса

МС1468 МС1568

RM4195 RC4194 ЦА78ТОО SG1501

±15 ±(0,С5 - 32) ± (5 - 18)

ТО-66, ТО-99 ТО-66

SG3501 SG4501 J

RM4194 SE/NE5551

±(0,05 - 42) ±5 ±6

ТО-66 ТО-99, DIPТО-99,DIP

Таблица 2.10. Прецизионные источники опорного напряжения

Тип прибора

Температурный коэф­фициент напряжения,

Выходное напряжение, В

Выходной ток, мА

Входное напряжение, В

Напряжение шумов, мкВ

Тип корпуса

МС1403 МС1503 j

2.5.3. ИНТЕГРАЛЬНЫЕ МИКРОСХЕМЫ УПРАВЛЕНИЯ ИМПУЛЬСНЫМИ (КЛЮЧЕВЫМИ) СТАБИЛИЗАТОРАМИ НАПРЯЖЕНИЯ

Управляющие интегральные микросхемы для ключевых стабили­заторов представляют собой достаточно сложные схемы с высокой степенью интеграции функций и большим числом компонентов (они могут выполнять до 10 - 13 функций и заменять 200 - 300 дискретных компонентов). Одной из первых монолитных управляющих микро­схем для ключевого стабилизатора была ИМС типа TL497A. В этой ЯМС используется принцип стабилизации напряжения путем изменения частоты повторения импульсов с фиксированной дли­тельностью. Все интегральные схемы* выпущенные позднее, исполь­зуют принцип широтно-пмпульсной модуляции для стабилизации напряжения.

Таблица 2.11. Схемы управления ключевыми стабилизаторами

Тип прибора

Выходное напряже­ние, В

Входное напряже­ние, В

Выходной ток, мА

Наличие двухтактно­го выхода

Опорное напряжение, В

Температур­ный коэффи­циент напря­жения, 10 -б /°С

Дополнительные функции

Частота пере­ключения, кГц

Тип корпуса

Мягкий запуск

Управле­ние (вклю­чение, вы­ключение)

Ограни­чение тока

мини­мальная

макси­маль­ная

МС3421 МС3521

цА540РС (DС)

Приборы типа SG3524 могут применяться как в двухтактных, так и в несимметричных схемах, в стабилизаторах напряжения любой полярности, в преобразователях напряжения постоянного тока с трансформаторной связью. Интегральная микросхема содержит ИОН, генератор, широтно-импульсный модулятор, триггер - генера­тор управляющих импульсов, два ключевых каскада, схемы ограни­чения тока и запирания стабилизатора напряжения. Микросхема может работать с частотой переключения 100 кГц и обеспечивает нестабильность по току в среднем 0,2 %. Для построения источников питания двухтактного, мостового и последовательного типа с широтно-импульсной модуляцией выпус­кается управляющая схема типа МС3420. На кристалле этой ИМС имеется ИОН, компаратор напряжения, двухтактный генератор на 100 кГц, широтно-импульсный модулятор и схема защиты. Прибор типаSL442 предназначен для ключевых стабилизато­ров напряжения параллельного и последовательного типов. На кристалле ИМС типаTDA1060 кроме источника опорного напряжения с температурной компенсацией размещены генератор пилообразного напряжения, широтно-импульсный модулятор, схема включения и выключения напряжения питания, схема размагничива­ния сердечника, схема регулировки коэффициента заполнения импульсов, вход для внешней синхронизации, схема ограничения тока и защиты от перегрузок. В табл. 2.11 представлены электрические параметры микросхем управления ключевыми стабилизаторами напряжения.

Стабильность источника питания определяется практически только его опорным напряжением. Мы уже видели, что стабилитрон из-за конечного внутреннего сопротивления дает постоянное выходное напряжение только при постоянном токе, протекающем через него. Для получения постоянного тока имеется два обычных способа: использовать второй диод в качестве предварительного стабилизатора или применить транзистор в качестве источника стабильного тока. Схема предварительного стабилизатора показана на рис. 9.28, где стабилизатор на 10-вольтовом диоде играет роль стабилизированного источника для стабилизатора на диоде с опорным напряжением 5,6 В. Поэтому в последнем диоде течет почти постоянный ток, не зависящий от изменений входного напряжения.

На рис. 9.29 приведена схема Вильямса «с двойным кольцом» (ring of two), в которой изящно использованы биполярные транзисторы в качестве источников постоянного тока для стабилитронов. Напряжение на базе транзистора T Y поддерживается равным 5,6 В, поэтому его эмиттерный ток устанавливается таким, чтобы напряжение на эмиттере было 5,6 - 0,6 = 5,0 В; таким образом, эмиттерный ток транзистора Tj равен 5,0/470 А, или приблизительно 10 мА. Коллекторный ток транзистора T v примерно равный току эмиттера, течет в стабилитрон D v который, в свою очередь, определяет напряжение на базе Т г Это приводит к тому, что транзистор Т 2 обеспечивает протекание постоянного тока 10 мА через стабилитрон D r А этот стабилитрон играет роль источника опорного напряжения, которое подается на базу транзистора Т у.

У большинства стабилитронов напряжение пробоя изменяется с температурой. Диоды с напряжением пробоя менее 5 В функционируют в основном за счет туннельного эффекта и обладают отрицательным температурным коэффициентом, то есть у них напряжение пробоя уменьшается с ростом

Рис. 9.28. Источник стабильного опорного напряжения с предварительным стабилизатором.

Рис. 9.29. Схема источника эталонного напряжения «с двойным кольцом», в которой транзисторы играют роль источников стабильного тока.

температуры. При напряжениях больше 6 В в пробое доминирует лавинный эффект и температурный коэффициент при этом положителен, то есть напряжение пробоя увеличивается с ростом температуры. Возникает вопрос: что происходит между этими двумя режимами, где пробой является комбинацией этих двух механизмов? Ответ состоит в том, что могут быть созданы диоды с напряжением пробоя около 5,6 или 6,2 В, действительно имеющие очень малые температурные коэффициенты; если применить такие диоды в схемах, подобных тем, что приведены на рис. 9.28 и 9.29, то можно получить столь же стабильную э.д.с., как у эталонного элемента Вестона.

Статьи по теме